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PART I. REVIEW

1. Everything we do here is consistent with the

CCSSM.

H. Wu, (2011). Understanding Numbers in Elemen-

tary School Mathematics. Providence, RI. American

Mathematical Society.

H. Wu, (2011). Teaching Fractions According to the

Common Core Standards.

http://math.berkeley.edu/˜wu/CCSS-Fractions.pdf.



2. We give precise definitions for all concepts.

3. We give reason for every assertion.

4. The arithmetic operations of fractions are

very similar to those of whole numbers.



5. Content coverage in the afternoon session:

Applications of multiplication, division, com-

plex fractions, percent, ratio, constant rate.

This presentation directly addresses the teaching of

fractions in the 5th and 6th grades, but the basic idea

of how to approach fractions is of course applicable

to all of K-12.



6. What are we really fighting against?

The mathematics encoded in existing textbooks, e.g.,

absence of definition of a fraction, how equivalent

fractions is taught, etc.

We call this body of flawed knowledge,

TSM (Textbook School Mathematics).



The number line.

On a horizontal line, let two points be singled out.

Identify the point to the left with 0 and the one to

the right with 1. This segment, denoted by [0,1] is

called the unit segment and 1 is called the unit.

0 1



Now mark off equidistant points to the right of 1

as in a ruler, as shown, and identify the successive

points with 2, 3, 4, . . . .

0 1 2 3 4 5

The line, with a sequence of equidistant points on

the right identified with the whole numbers, is called

the number line.



Divide [0,1] into three segments of equal length. The

part adjoining 0 is a third. Denote its right endpoint

by 1
3.

0 1 2 3 4 5

1
3



Fix the distance between 0 and 1
3. Marking off

equidistant points to the right of 1
3 as we would with

whole numbers, we obtain a sequence of points, de-

noted by 2
3, 3

3, 4
3, etc.

0 1 2 3 4 5

1
3

2
3

3
3

4
3

5
3 etc.

This gives all the fractions with denominator equal

to 3.



Fractions with denominator equal to 5 are similarly

placed on the number line: 8
5 is the 8th point to the

right of 0 in the sequence of fifths. And so on.

0 1 2
0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5



We also agree to identify 0
n with 0 for any nonzero

whole number n. In this way, all fractions are unam-

biguously placed on the number line.

Intuitively, we have identified parts-of-a-whole with

points on the number line.



(Finite) decimals

They are fractions whose denominators are 1, 10,

100, 1000, . . . . Back in 1593, the German Jesuit

astronomer C. Clavius (1538-1612) introduced the

special notation below:

235

100

(
=

235

102

)
is simplified to 2.35;

57

10000

(
=

57

104

)
is simplified to 0.0057



The first major benefit of having a precise definition

of a fraction: we can now define precisely what it

means for two fractions A and B to be equal, or for

A to be smaller than B:

By definition, A = B if A and B are the same point

on the number line, and A < B if the point A on the

number line is to the left of B:

A B



The pivotal theorem.

Theorem on equivalent fractions. Given any frac-

tions k
` and a nonzero whole number c, then:

k

`
=

c k

c `

This says that the two fractions k
` and c k

c ` are the

same point on the number line.



Fundamental Fact of Fraction Pairs (FFFP)

Any two fractions may be regarded as two fractions

with the same denominator.

Given m
n and k

` , they can be written as, respectively,

`m

`n
and

kn

`n



Addition: First, how do we add whole numbers,

3 + 4?

u︸ ︷︷ ︸
4

︸ ︷︷ ︸
3

How do we add 4
5 + 3

5?

u︸ ︷︷ ︸
4
5

︸ ︷︷ ︸
3
5



In general, we define the addition of k
` and m

n in

exactly the same way: k
` + m

n is the length of

the concatenation of one segment of length k
` and

another of length m
n :

u︸ ︷︷ ︸
k
`

︸ ︷︷ ︸
m
n

By FFFP,

k

`
+

m

n
=

kn

`n
+

`m

`n
=

kn + `m

`n



Subtraction: If m
n < k

` , then we define k
` − m

n

to be the length of the remaining segment when a

segment of length m
n is removed from one end of a

(longer) segment of length k
` .

︷ ︸︸ ︷k
`

︸ ︷︷ ︸
m
n

k

`
−

m

n
=

kn

`n
−

`m

`n
=

kn− `m

`n



Multiplication: k
` ×

m
n is the total length of k parts

when [0,mn ] is divided into ` equal parts.

The “total length of k parts when [0,mn ] is divided

into ` equal parts” is what we call “k
` of m

n” in

everyday language. Therefore,

k

`
of

m

n
=

k

`
×

m

n
.



Because 1
` ×

m
n = 1

` ×
`m
`n = m

`n, we get

k

`
×

m

n
=

m

`n
+ · · ·+

m

`n︸ ︷︷ ︸
k times

Therefore,

k

`
×

m

n
=

km

`n

This is the all important Product Formula.



PART II. APPLICATIONS OF MULTIPLICA-

TION

The Product Formula shows that fraction multipli-

cation is commutative, i.e.,

k

`
×

m

n
=

m

n
×

k

`
,

because

km

`n
=

mk

n`
.



You think this formula is boring,? Try this:

Which is heavier:

7
9 of 11

4 kg of sand, or 11
4 of 7

9 kg of sand?

(By definition, the first is the totality of 7 parts when

11
4 is divided into 9 equal parts, while the latter is 11

parts when 7
9 is divided into 4 equal parts.)



Fraction Multiplication is also associative and dis-

tributive in general:(
k

`
×

m

n

)
×

a

b
=

k

`
×
(
m

n
×

a

b

)

and

k

`
×
(
m

n
+

a

b

)
=

(
k

`
×

m

n

)
+

(
k

`
×

a

b

)

The verification using the Product Formula is routine

(and somewhat tedious).

There are many more consequences of the Product

Formula.



The cancellation phenomenon, e.g.,

6 8× 5

6 9× 13
×

7× 6 9
6 8× 11

=
5

13
×

7

11

i.e., we cancelled the 8 in top and bottom, and can-

celled the 9 in top and bottom.

We could do that because, by the Product Formula

and the theorem on equivalent fractions, we have:

8× 5

9× 13
×

7× 9

8× 11
=

(8× 9)× (5× 7)

(8× 9)× (13× 11)
=

5× 7

13× 11

Obviously 5
13 ×

7
11 is also equal to 5×7

13×11.



By cancellation, any nonzero fraction m
n satisfies

n
m ×

m
n = 1. Let k

` be a fraction. Multiply both

sides of the equality by k
` to get: k

` ×
(
n
m ×

m
n

)
= k

` .

By the associative law, we have(
k

`
×

n

m

)
×

m

n
=

k

`

Denoting the fraction k
` ×

n
m by Q, this means:

Given any nonzero m
n and any k

` , there is

always a fraction Q so that k
` = Q× m

n .



We saw that if Q = k
` ×

n
m, then k

` = Q× m
n . But

could there be another fraction Q′ so that we also

have
k

`
= Q′ ×

m

n
?

The answer is no, because if we multiply both sides

by n
m, we would get

k

`
×

n

m
= Q′ ×

m

n
×

n

m
.

Therefore Q′ = k
` ×

n
m, which is equal to Q.



The fact that for any fractions m
n and k

` , with m
n 6= 0,

there is a unique fraction Q so that

k

`
= Q×

m

n
,

will be basic to the discussion of fraction division.

For example,

1

12
=

(
1

12
×

8

117

)
×

117

8



We now give a second interpretation of k
` ×

m
n :

k
` ×

m
n is equal to k

` copies of m
n , in the sense

of everyday language.

We now elaborate on this statement by considering,

in succession, the case of k
` being a whole number,

a proper fraction and, finally, an improper fraction

(k` > 1).



If k
` is a whole number, e.g., 5, then by the Product

Formula,

5×
m

n
=

5

1
×

m

n
=

5m

n
=

m

n
+ · · ·+

m

n︸ ︷︷ ︸
5

,

which displays “5 copies of m
n ”.

If k
` is a proper fraction, e.g., 3

7, then by the

definition of fraction multiplication, 3
7×

m
n is exactly

“3
7 copies of m

n ”, i.e., not all of m
n , only 3 of the

parts when m
n is divided into 7 equal parts.



Finally, if k
` is an improper fraction, e.g., 35

4 , then

we write it as a mixed number, 83
4.

Suppose we have a bucket and its capacity is m
n

liters. Does (83
4 ×

m
n ) liters have the meaning of 8

and 3
4 buckets (“83

4 copies of m
n”)?



By the distributive law, 83
4 ×

m
n liters is equal to

8
3

4
×

m

n
=

(
8 +

3

4

)
×

m

n
=

(
8×

m

n

)
+

(
3

4
×

m

n

)

Now 8× m
n liters is 8 buckets, and 3

4 ×
m
n liters is

(by definition) 3
4 of the bucket.

Thus 83
4 ×

m
n liters is 83

4 buckets (if the capacity of

the bucket is m
n liters).



Example. A rod 155
7 meters long is cut into short

pieces which are each 21
8 meters long. How many

short pieces are there?

︸ ︷︷ ︸
21

8

︸ ︷︷ ︸
21

8

︸ ︷︷ ︸
21

8
· · ·· · ·

Students are taught that the way to do such prob-

lems is to divide 155
7 by 21

8 , but without any expla-

nation.

We will do it by applying the preceding ideas.



Let us say a
b short pieces make up the rod. By what

we just did, this says

a

b
× 2

1

8
= 15

5

7
,

i.e.,
a

b
×

17

8
=

110

7

Multiplying both sides by 8
17 (because we know

17
8 ×

8
17 = 1 from an earlier slide), we get(

a

b
×

17

8

)
×

8

17
=

110

7
×

8

17

so that
a

b
×
(

17

8
×

8

17

)
= 7

47

119
. Thus

a

b
= 7

47

119
.



Remark on 7 47
119:

We know the answer is: “there are 7 47
119 short pieces

in the rod”.

But what is the meaning of 47
119 in this context?

In TSM, it is usually stated that it requires a concep-

tual understanding of fraction to see that the rod can

yield 7 and 47
119 of a short piece. We will show in-

stead that what is required is a mathematical knowl-

edge of the distributive law.



We are given that for the rod of length 155
7 meters,

15
5

7
= 7

47

119
× 2

1

8
.

By the definition of mixed numbers,

15
5

7
= (7 +

47

119
)× 2

1

8

=
(

7× 2
1

8

)
+

(
47

119
× 2

1

8

)
(dist. law)

This says, explicitly, that the whole rod consists of 7

short pieces, each being 21
8 meters long, plus 47

119 of a

short piece (because this is our definition of fraction

multiplication).



Why not just define multiplication by the Product

Formula:
k

`
×

m

n
=

km

`n
?

Because: (i) This definition of multiplication raises

the question: why not define addition as

k

`
+

m

n
=

k + m

` + n

It may not be easy to explain to students why not.

(ii) Problems such as the one about the rod can

only be done by rote if multiplication is defined by

the product formula with no other meaning.



Multiplication of decimals.

In TSM, one multiplies two decimals, e.g., 0.00257×

4.25, by multiplying the corresponding whole num-

bers, i.e., 257×425, then place the decimal point in

the (5 + 2)th digit from the right. No explanation.

The reason is the Product Formula:

0.00257× 4.25 =
257

105
×

425

102

=
257× 425

105+2
(product formula)

=
109225

105+2
= 0.0109225.



Multiplication of fractions as area.

The following Theorem complements our under-

standing of what fraction multiplication means.

m

n
×

k

`
= area of rectangle with sides

m

n
and

k

`

m
n

k
`

By the Product Formula, it suffices to prove that the

area of a rectangle with sides m
n and k

` is mk
n` .



It suffices to give the proof of the theorem for the

special case of a rectangle with sides 2
3 and 5

4, be-

cause the reasoning in the general case is no differ-

ent. Thus we have:

2
3

5
4

Will prove that this rectangle has area
2× 5

3× 4
.



Recall that 2
3 is 2 copies of 1

3, and 5
4 is 5 copies of 1

4.

When we put the unit square (i.e., a square all of

whose sides have length 1) in the background (the

dashed magenta square), we see that

The vertical side of the rectangle is 2
3 of the vertical

side of the unit square, while the horizontal side is 5
4

of the horizontal side of the unit square.

2
3

5
4


︸ ︷︷ ︸



If we can find out the area of any of the small rect-

angles, such as the red one R below, then the area

of the big rectangle would just be the sum of (2×5)

of the area of R.

2
3

5
4

R

We will prove that the area of R is 1
3×4.



Once we know that area of R is 1
3×4, then the area

of the original rectangle

2
3

5
4

R

would be

1

3× 4
+ · · ·+

1

3× 4︸ ︷︷ ︸
2×5

=
2× 5

3× 4
,

and the proof would be complete.



We now concentrate on proving that the area of R

is 1
3×4. Recall R has sides 1

3 and 1
4.

1
3

1
4

R

We can place R in the unit square as before:



Divide the unit square into 4 equal parts vertically,

and 3 equal parts horizontally. Then the unit square

is paved by 3 × 4 (= 12) rectangles all of which

have sides of lengths 1
3 and 1

4.

1

1

R

Observe that each of these 12 rectangles is congru-

ent to R, as shown.



On the number line, let the unit 1 be the area of

the unit square. The areas of these 12 rectangles

therefore provide a division of the unit 1 into 12 equal

parts, so the area of any one of these 12 rectangles

is

1

12
=

1

3× 4

In particular, the area of R is 1
3×4. As we said

before, this finishes the proof that a rectangle with

sides 2
3 and 5

4 has area 2×5
3×4.



Here is a problem for you:

Explain why the area of a rectangle with sides

3

5
and

1

2
is

3× 1

5× 2
.



Solution. Divide the unit square vertically into 5

equal parts and horizontally into 2 equal parts. By

definition, we have to show that the area of the thick-

ened rectangle is 3×1
5×2.



Solution (cont.) The black (lower left) rectangle,

being one of 10 (= 5× 2) congruent rectangles that

pave the unit square, is 1 part when the unit is divided

into 10 equal parts; so it has area 1
5×2. Since 3 of

these pave the thickened rectangle, the latter has

area 3
5×2 = 3×1

5×2.



We reduced the problem of computing the area of

the 2
3 by 5

4 rectangle to that of computing the area

of a 1
3 by 1

4 rectangle.

Where have you seen this kind of reasoning before?



According to the CCSSM:

5.NF 4b Find the area of a rectangle with

fractional side lengths by tiling it with [rect-

angles] of the appropriate unit fraction side

lengths, and show that the area is the same as

would be found by multiplying the side lengths.

Multiply fractional side lengths to find areas of

rectangles, and represent fraction products as

rectangular areas.



PART III. DIVISION

To uncover the meaning of the division of fractions,

again we look to whole numbers for guidance.

Because whole numbers are themselves fractions, their

division cannot be conceptually different from the di-

vision of arbitrary fractions.



We tell students that 24
6 (the preferred notation for

“24 ÷ 6” ) is 4 because 4 × 6 = 24, that 48
3 =

16 because 16 × 3 = 48, that 54
18 = 3 because

3× 18 = 54, etc.

In general, if m, n, q are whole numbers, n 6= 0 and

m is a multiple of n, then we say

m

n
= q if m = qn



Three comments:

(i) Division among whole numbers is nothing more

than a different way of writing a multiplication fact.

This is true for the division of numbers in general.

(ii) A division m
n among whole numbers m, n can-

not be carried out unless m is a multiple of n. For

example, 37
16 is not a division among whole numbers.



(iii) Among whole numbers, there is a distinction

between division and division-with-remainder.

Division (like addition, subtractions and multiplica-

tion) is a binary operation, in the sense that it as-

sociates a third number to two given numbers.

Division-with-remainder, on the other hand, is not a

binary operation as it sends 37 and 16 to two num-

bers, 2 (quotient) and 5 (remainder).



Because for whole numbers m, n (n 6= 0), the def-

inition of m divided by n is the whole number q so

that m = qn, we simply imitate this definition for

fractions:

Given fractions M , N , (N 6= 0), we define M divided

by N to be the fraction Q so that M = QN .



But we must be careful!

For whole numbers m and n (n 6= 0), we define m
n

only when we know there is a (unique) whole number

q so that m = qn.

For any fractions k
` and m

n (mn 6= 0), we have now

defined their divison k/`
m/n

. But do we know that

there is a unique fraction Q so that
k

`
= Q×

m

n
?



Yes!

Recall an earlier fact: Given any nonzero fraction m
n

and any fraction k
` , there is a unique fraction Q so

that
k

`
= Q×

m

n
. In fact, Q =

k

`
×

n

m
.

We now know that the definition of fraction division

is completely sound.



Here is a reformulation:

The statement that the division of a fraction M by

a nonzero fraction N is equal to Q, i.e., M
N = Q, is

merely a different way of writing the multiplicative

fact that M = QN for a unique fraction Q.

The fact that there is always such a fraction Q is

guaranteed.



To recapitulate: if Q is the division of a fraction k
`

by m
n , then

Q =
k

`
×

n

m

In other words, “to divide, you invert and multiply”,

i.e., invert m
n to get n

m and then use it to multiply k
` .

Invert-and-multiply is now seen to be a totally trans-

parent skill. There is no reason to avoid it.



TSM’s explanation of the division of fractions is lim-

ited to “division is the inverse operation of multipli-

cation” plus some analogies.

Keep in mind that TSM does not even explain what

multiplication is.

Ours is not to reason why, just invert and multiply.



According to the CCSSM:

6.NS 1 . . . use the relationship between mul-

tiplication and division to explain that (2/3)÷

(3/4) = 8/9 because 3/4 of 8/9 is 2/3. (In

general,(a/b)÷ (c/d) = ad/bc. . . . )



Let us revisit an earlier problem: A rod 155
7 meters

long is cut into short pieces which are 21
8 meters

long. How many short pieces are there?

Let there be Q short pieces in the rod. Then by the

interpretation of multiplication, 155
7 = Q × 21

8. By

the definition of division, this means

Q =
155

7

21
8

=
110

7
17
8

=
110

7
×

8

7
=

880

119
= 7

47

119
.



Of course, we used the invert and multiply rule to

compute the division.

Notice that we have explained why this problem can

be done by dividing 155
7 by 21

8.

TSM does not.



Comments: The discussion of division is heavily

dependent on a solid knowledge of multiplication.

First, the fact that M
N always makes sense depends

on a fact proved about multiplication. In the solution

of word problems, such as the last problem with the

rod, the possibility of reasoning with the problem to

get a solution again depends on a solid grounding in

multiplication.

In mathematics, foundational knowledge is always

critical.



Division of decimals.

It is immediately reduced to the division of whole

numbers. For example, using invert-and-multiply,

2.114

0.87
=

2114
1000

87
100

=
211400

87000

Or, if you prefer:

2114

870



This conclusion is not satisfactory because we want

an answer in the form of a decimal. How to convert

a division of whole numbers into a decimal? We give

a partial answer.

Consider 15
32:

15

32
=

15× 105

32

× 1

105

Using long division, we obtain 1500000 = (46875×

32) + 0 so that

15

32
=

46875

105
= 0.46875



Explore: is the use of 105 critical? Suppose we use

108:

15

32
=

15× 108

32

× 1

108

Using long division, we obtain

1500000000 = (468× 32) + 0, so that

15

32
=

46875000

108
= 0.46875000 = 0.46875

Same answer.



Suppose we use 103:

15

32
=

15× 103

32

× 1

103

Using long division, we obtain 15000 = (468×32)+

24 so that

15

32
=

(468× 32) + 24

32

× 1

103

=
468

103
+

(
24

32
×

1

103

)

= 0.468 +
(

3

4
×

1

103

)

Note that 3
4 ×

1
103 = 75

100 ×
1

103 = 0.00075. So we get

0.46875 again.



Another example: 218
625.

218

625
=

218× 105

625

× 1

105

By the long division algorithm,

21800000 = (34880× 625) + 0

Thus,

218

625
=

34880

105
= 0.34880 = 0.3488



Here is a problem for you:

Convert
15

64
to a decimal.



Solution.

15

64
=

15× 106

64
×

1

106

Long division gives 15000000 = (234375× 64) + 0.

Thus

15

64
=

234375

106
= 0.234375



We have so far dealt with fractions that lead to finite

decimals. In general, a fraction such as 8
33 will lead

to a repeating decimal basically by the same method.

In that case, however, the remainder in each long

division will not be 0. But the remainders repeat, so

the digits in the quotient also repeat.



PART IV. COMPLEX FRACTIONS

If M and N are fractions (N understood to be nonzero

from now on), the division M
N is also fraction. M

N is

called a complex fraction.

M and N will continue to be called the numerator

and denominator of M
N .



Suppose A, B, C, D are whole numbers, then:

C ·A
C ·B

=
A

B

A

B
±

C

D
=

AD ±BC

BD

A

B
·
C

D
=

AC

BD

A/B

C/D
=

AD

BC
, etc.

Question: Do these still hold for complex fractions,

i.e., when A, . . . , D are fractions?



The answer is yes.

The explanation can be a routine chore (keep using

invert-and-multiply) or short but abstract.

The main point is, however, that once you get past

fraction division, the “fractions” you encounter are

almost all complex fractions (not ordinary fractions),

and you should make your students aware of the ex-

tension of these formulas to complex fractions.

TSM does not.



PART V. PERCENT

The main problem with the learning of percent is

identical to the problem of learning fractions: there

is no definition of percent in TSM.

What is a student supposed to make of

“out of a hundred”?

How to reason precisely with “out of a hundred”?

How to compute with “out of a hundred”?



Problem in a seventh grade class:∗

Shade 6 of the small squares in the rectangle

shown below.

Using this diagram, explain how to determine the

percent of the area that is shaded.

∗M.K. Stein, M.S. Smith,, M.A. Henningsen, E.A. Silver, Implementing
Standards-Based Mathematics Instruction, Teachers College, Columbia
University, 2000. P. 47.



The teacher’s goal was for the students to figure

out the percent representation of shaded portions of

a series of rectangles.

He wanted his students to “use the visual diagrams

to determine their numerical answers rather than re-

lying on the traditional algorithms” that students had

learned.

He wanted to help students develop “conceptual un-

derstandings of [this form] of representing fractional

quantities. . . ”



It turned out that, after 30 minutes, his students had

no success.

Observe: there are 40 squares in the rectangle. The

teacher wanted to know 6
40 as a percent.

“Visual diagrams” may allow student to see 6
40 as a

percent, but what about 6
39 as a percent? Would

“out of a hundred” help? What kind of conceptual

understanding are we talking about here?



Definition. A percent is a complex fraction whose

denominator is 100.

A percent N
100, where N is a fraction, is often written

as N%. By regarding N
100 as an ordinary fraction, we

recall that N% of a quantity m
n is exactly N%× m

n .

Now

N%×
m

n
= N ×

(
1

100
×

m

n

)
. (1)

The expression 1
100 ×

m
n means the length of 1 part

when [0,mn ] is divided into 100 equal parts.



Therefore, equation (1) explains that,

N% of m
n is N copies of a part when [0,mn ] is

divided into 100 equal parts.

Equation (1) makes precise the naive concept of

“percent” as “out of a hundred”.

But equation (1) says more: even when N is a frac-

tion (e.g., 3
17), we can still make sense of “out of a

hundred”.



Next, by strictly following the definition of percent

and using the established facts about fraction multi-

plication, we will do the following problems:

(i) What is 5% of 24?

(ii) 5% of what number is 16?

(iii) What percent of 24 is equal to 9?



(i) 5% of 24 is 5%× 24 = 5
100 × 24 = 6

5.

(ii) Let us say that 5% of a certain number y is 16,

then again strictly from the definition given above,

this translates into (5%)×y = 16, i.e., y× 5
100 = 16.

By the definition of division, this says

y =
16
5

100

= 16×
100

5
= 320



(iii) Suppose N% of 24 is 9. This translates into

N% × 24 = 9, or N
100 × 24 = 9. Multiplying both

sides by 100
24 , we have

N =
900

24
=

75

2
= 37

1

2

So the answer is 371
2%.

We observe that without the precise definition of per-

cent as a complex fraction, none of these solutions

could have been obtained in a logical manner.



Let us return to the problem at the beginning.

There are 40 squares in the rectangle, and we must

express 6 out of 40 as a percent, i.e.,

if
6

40
=

N

100
for a fraction N , what is N?

It is simple:

N =
6× 100

40
= 15

So the answer is 15%.



The teacher, however, had in mind something like

this: There are 40 squares, so 4 squares constitute

10%. Another 2 would therefore add 5%. As 6 =

4 + 2, 6 squares make up 15%.

The teacher’s solution may be cute, but it has very

limited scope. For example, how would this method

help you express 6 out of 39 squares as a percent?

Do you believe that the teacher’s solution shows

more conceptual understanding than the hard work

we have done?



Let us express 6 out of 39 as a percent: if 6
39 = N%

for some fraction N , then

6

39
=

N

100
, so that N =

6× 100

39
.

(This is an equation between complex fractions.)

We have N = 1515
39.

Answer: 6 is (1515
39)% of 39.



Here is a problem for you:

1 is what percent of 85?



Solution:

Let 1 be N% of 85, where N is a fraction. Then

1 = N%× 85 =
N

100
× 85

Then N = 100
85 = 1 3

17.

Answer: 1 is (1 3
17)% of 85.



PART VI. RATIO

The teaching of ratio suffers the same fate as the

teaching of percent. Here is one of many similar

explanations (“definitions”) of ratio in TSM:

A ratio is a comparison of any two quantities.

A ratio may be used to convey an idea that

cannot be expressed as a single number.



We cannot do mathematics on this basis. Let us

give a precise definition of ratio.

Definition. Given two fractions A and B. The ratio

of A to B, sometimes denoted by A : B, is the

complex fraction A
B.

By convention, to say that the ratio of boys to girls

in a classroom is 3 to 2 means that, if B (resp., G)

is the number of boys (resp., girls) in the classroom,

then B
G = 3

2.



Similarly, in making a fruit punch, the statement that

the ratio of fruit juice to rum is 7 to 2 means

that we are comparing the volumes of the two fluids

(when the use of volume as the unit is understood

in this situation).

If the amount of fruit juice is A fluid ounces and

the amount of rum is B fluid ounces, to say that the

ratio of fruit juice to rum is 7 to 2 means A
B = 7

2.



Example. In a school auditorium with 696 students,

the ratio of boys to girls is 11 to 13. How many are

boys and how many are girls?

Let the number of boys be B and the number of girls

be G, then we are given that B
G = 11

13. Therefore,

B =
11

13
×G

By the interpretation of multiplication, this says the

number B = the total number in 11 groups when the

girls (G in toto) are divided into 13 equal groups.



0 G

0 B

Therefore:

0 G B + G

696



Therefore the 696 students are now divided into 11+

13 equal groups, of which the girls comprise 13 of

these groups and the boys 11. Since the size of one

group is 696
24 = 29, we see that G = 13 × 29 = 377

and B = 11× 29 = 319.

Although ratio is a division concept, the preceding

reasoning leans heavily on our understanding of what

multiplication means. One cannot overemphasize

the fact that division is nothing but an alternate way

of writing multiplication facts.



Additional comments. (i) This solution follows the

definition of ratio, and the reasoning is strictly by

the book and completely straightforward. No need

to guess what ratio means.

(ii) The solution shows that the above definition of

ratio is completely intuitive (even if it appears to be

otherwise) and, because of its precision, lends itself

easily to direct computations. The latter fact makes

it learnable.



We now give a computational solution.

We are given that B
G = 11

13. Thus by CMA, 13B =

11G. Let k be this common number, i.e., 13B =

11G = k, so B = k
13 and G = k

11.

Now we are also given B + G = 696, so k
13 + k

11 =

696. This gives 24k
143 = 696, and therefore 24k =

143 × 696, i.e., k = 29 × 143. Since B = k
13, we

get B = 319. The value of G can be obtained from

either B + G = 696, or from G = k
11. In any case,

G = 377.



Here is a problem for you:

In a town, two-thirds of the men are married to five-

seventh of the women. What is the ratio of men to

women?



Let M be the number of men and W be the number

of women. Want M
W .

Given 2
3 ×M = 5

7 ×W . Using CMA, we get

M

W
=

5
7
2
3

=
15

14
.



PART VII. CONSTANT RATE

In TSM, “rate” is regarded as a prominent concept.

The standard “rates” are those arising from dis-

tance (speed), faucets (rate of water flow), lawns

(rate of lawn-moving), and houses (rate of house-

painting).

For simplicity, we will concentrate on speed.



Consider the following standard “rate problem”:

Ellen walks 500 meters in 8 minutes. How far

does she walk in 11
2 minutes?

According to TSM, there are at least two ways to

solve this problem.



First, there is the common practice of “setting up a

proportion”.

Students are told that if x is the number of meters

Ellen walks after 11
2 minutes, then

“500 is to x (meters) as 8 is to 11
2 (minutes)”,

and therefore

500

x
=

8

11
2

Solving for x by CMA, we get x = 933
4 meters.

(This is an equality between complex fractions.)



A second method is to find the distance Ellen walks

in unit time.

In this case, it is natural to choose the unit to be

a half-minute (30 seconds). Since Ellen walks 500

meters in 16 units, she walks (500/16) meters per

unit time, i.e., 311
4 meters each half minute.

Therefore in 3 units (11
2 minutes), she walks

3× 311
4 = 933

4 meters.



No reason is given for either method. Many students

are known to be confused about why one can set up

a proportion and why the problem can be done by

choosing a unit time.

In fact, the problem as is cannot be solved.

For example, if Ellen walks in the way described be-

low, then neither method would make sense.



Suppose Ellen walks in the following way in the first

two minutes, and repeats it in subsequent two-minute

intervals (she still walks 500 meters in 8 minutes):

time after she starts distance she walks

first minute 100 meters

1 minute to 11
2 minutes at rest

11
2 minutes to 2 minutes 25 meters

Then clearly she walks 100 meters in the first 11
2

minutes, not 933
4 meters. Moreover, she walks 0

meters in the third unit time (from 1 minute to 11
2

minutes).



The implicit assumption, which TSM often takes

for granted, is that Ellen walks at constant speed.

Reformulation:

Ellen walks at constant speed and she walks

500 meters in 8 minutes. How far does she

walk in 11
2 minutes?

Unfortunately, one almost never finds a correct def-

inition of constant speed in TSM.



To define constant speed, we begin with the more

basic concept of the average speed over a time

interval from time s to time t, s < t, as

distance traveled from s to t

t− s

The term “average speed” by itself carries no

information because we have to know the av-

erage speed from a specific point in time s to

another point in time t.



In the example of Ellen walking during the first two

minutes, let the unit of time t be minutes and let

t = 0 at the start. Then her average speed from

t = 0 to t = 1 is 100 m/min.

Her average speed from t = 0 to t = 1.5 is 100/1.5,

which is 662
3 m/min, and her average speed from

t = 1.5 to t = 2 is 50 m/min.

Her average speed is not the same over different time

intervals.



Definition. A motion of constant speed v (v a

fixed number) is one in which the average speed over

any time interval is equal to v m/min.

The emphasis is on “any ”.

This concept will take 6th and 7th graders some time

to get used to.



Ellen walks at constant speed and she walks

500 meters in 8 minutes. How far does she

walk in 11
2 minutes?

Her average speed over the 8-minute interval is

500
8 m/min.

Let Ellen walk x meters in 11
2 minutes. Her average

speed over this interval is x
11

2
m/min.

By the assumption of constant speed,
500

8
=

x

11
2

.



Under the explicit assumption of constant speed, we

can now understand why one can set up a proportion.

It is not “conceptual understanding about propor-

tional reasoning.” Rather, it is a mathematical hy-

pothesis that must be explicitly given.

There are many gaps in TSM.



With constant speed, we also see why it is OK to

pick any time interval to be the unit time.

Suppose we decide the unit time should be 30 sec-

onds. Let Ellen walk k meters in unit time, then her

average speed over unit time is k
1/2 m/min. Her av-

erage speed over 8 minutes is of course 500
8 m/min.

Constant speed implies k
1
2

= 500
8 and k = 311

4 m.



Suppose Ellen walks x meters in 11
2 minutes. Then

her average speed is x
3/2 m/min.

By constant speed,
x
3
2

=
k
1
2

, so that

x =
(

3
2

)
×

k(
1
2

) = 3× k meters,

which is the same as before. (Complex fractions!)



In other settings, constant speed becomes constant

rate. We illustrates with water flow.

The average rate of water flow over a time in-

terval from s to t, s < t, is by definition

total output of water from s to t

t− s

If water output is measured in gallons, the unit would

be gal/min.

By definition, water flows at a constant rate if the

average rate of water flow is a fixed number over any

time interval.



We revisit the Goals of these sessions:

We give precise definitions for all concepts.

Especially fractions, multiplication of fractions,

division of fractions, percent, etc.



We give a logical reason for every assertion we

make.

We don’t force students to believe anything

that we cannot explain, logically.

Think of invert and multiply, why “two-thirds

of five pounds” is 2
3× 5 pounds, why 0.0028×

0.543 = 0.0015204, etc.)



Everything we do is consistent with the CCSSM.

We are trying to get out of the quagmire of

TSM.


